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Introduction

Area of research: additive combinatorics, multiplicative
ideal theory, commutative algebra, factorization theory

We study a zero-sum problem dealing with minimal zero-
sum sequences of maximal length over finite abelian groups.
A positive answer to this problem yields a structural descrip-
tion of sets of lengths with maximal elasticity in transfer
Krull monoids over finite abelian groups.

Monoid of Zero-sum Sequences

Monoids of zero-sum sequences are discrete, combina-
torial objects that have been investigated using methods
from additive and combinatorial number theory.
Zero-sum problems occur naturally in various branches of
combinatorics, number theory, graph theory, Ramsey theory
and geometry.

Let (G,+) be an abelian group and G0 ⊂ G a subset. Let
(F(G0), ·) be the free abelian monoid with basis G0.
•S = g1 . . . gl ∈ F(G0) is called a sequence,

• σ(S) = g1 + · · · + gl ∈ G is its sum,

• |S| = l is its length.

Definition. The submonoid

B(G0) = {S ∈ F(G0) | σ(S) = 0G } ⊂ F(G0)

is the monoid of zero-sum sequences over G0.
The atoms of B(G0) are the minimal zero-sum se-
quences.

Davenport Constant

Erdös, Baayen and Davenport (1967–69) posed the problem
to find the smallest integer l such that every sequence S over
G of length ≥ l has a non-empty subsequence with sum zero.
In the subsequent literature, it has been called D(G) (the
Davenport constant).

Definition. D(G) is the maximal length of a minimal
zero-sum sequence over G.

Let G = Cn1⊕ . . .⊕Cnr where r = r(G) is the rank and
nr = exp(G) is the exponent of G. Then

• 1 +
∑r

i=1(ni − 1) ≤ D(G) (≤ |G|)
• this is an equality for p-groups and for groups with
r(G) ≤ 2 (known since 1960s) and for some sparse
series of groups only, but not known in general in terms
of other group invariants.

• even less is known about the associated inverse prob-
lem (the typical associated inverse zero-sum
problem studies the structure of extremal se-
quences which possess no such zero-sum sub-
sequences).

Example.
(Due to H. Davenport) If R is the ring of integers of some
algebraic number field with ideal class group (isomorphic
to) G, then D(G) is the maximal number of prime ideals
(counted with or without multiplicity) which occur in the
prime ideal decomposition of aR for each irreducible element
a ∈ R.

Open problems. (on D(G))

•D(Cr
n) =?

•D(G) =? when r(G) = 3

•D(G) =? when G ∼= Cr
p⊕Cs

q . Note that 1 +
∑

(ni−1) �
D(G) is known in this case.

Arithmetical Invariants

Arithmetical invariants measure the extent of non-uniqueness
of factorizations and characterize the features that occur.

Let H be an atomic cancellative monoid, a ∈ H \H×.

•The set of lengths of a is

L(a) = { k ∈ N | a = u1 · · ·uk with atoms ui }.
The system of sets of lengths is

L(H) = { L(a) | a ∈ H }.

•The elasticity is

ρ(a) =
sup L(a)

min L(a)
and ρ(H) = sup

a∈H
ρ(a).

• If L(a) = { l1 < l2 < · · · }, then the set of distances
of a is ∆(a) = {li − li−1 | i} and ∆(H) =

⋃
a∈H ∆(a).

Example. Let C3 = 〈g〉. Then g3, (−g)3, g(−g) are
minimal zero-sum sequences, i.e., elements of B(C3), and

S = g3(−g)3 = (g(−g))3

shows L(S) = {2, 3}.

Transfer Krull Monoids

Transfer homomorphisms are constructed from a class of
monoids under consideration to the one that is easier to un-
derstand. The crucial property of a transfer homomorphism
is that it preserves the system of sets of lengths.

Definition. θ : H → T is a transfer homomorphism
if

(1)T = T×θ(H).

(2) For a ∈ H , s, t ∈ T , θ(a) = st implies a = bc with
b, c ∈ H such that θ(b) = sε−1 and θ(c) = εt with
ε ∈ T×.

How it started? (Narkiewicz 1979; Geroldinger 1988;
Halter-Koch 1997) Let H be a commutative Krull monoid,
G its divisor class group, and G0 ⊂ G the set of classes
containing prime divisors. Then there exists a transfer
homomorphism θ : H → B(G0) into the monoid of zero-
sum sequences over G0.

Definition. A cancellative monoid H is called transfer
Krull if there exists a transfer homomorphism H → B(G0)
for some abelian group G and G0 ⊂ G a subset.

Examples.

(1) If R is a Dedekind domain or a Krull domain, then
H = R• is a Krull monoid. (Note that C(R), the usual
class group, plays the role of G as in above definition)

(2) (Baeth – Smertnig 2021) Let R be a Bass ring and let
T(R) be the monoid of isomorphism classes of torsion-free
finitely generated R-modules, together with the operation
induced by the direct sum. Then T(R) is a reduced
transfer Krull monoid.
Main examples of transfer Krull monoids stem from non-
commutative algebra, we mention one here as well.

(3) (Smertnig 2013) Let OK be the ring of integers in an
algebraic number field K, A a central simple K-algebra,
and R a classical maximal OK-order of A. Then R•

is transfer Krull if and only if every stably free left R-
ideal is free, and if this holds then there is a transfer
homomorphism θ : R• → B(G) for some finite abelian
group G.

Conjecture

Conjecture. (Geroldinger – Zhong 2018 ) Every finite
abelian groupG, except from cyclic and elementary 2-groups,
has the following property:
for every minimal zero-sum sequence U = g1 · · · gl over
G of maximal length there are k ∈ N and minimal zero-
sum sequences U1, . . . , Uk, V1, . . . , Vk+1 with terms from
{g1, . . . , gl,−g1, . . . ,−gl} such that

U1 · · ·Uk = V1 · · ·Vk+1

Motivation

Theorem. Let H be a transfer Krull monoid over a finite
(not cyclic, not elementary 2-group) abelian group G (e.g., a
ring of integers with class group G). If above conjecture
holds, then there is an M ∈ N such that every set of
lengths L with maximal elasticity has the form:

L = L′ ∪ {y, y + 1, . . . , y + l} ∪ L′′

where y ∈ Z, l ∈ N, L′ ⊂ [−M + y,−1 + y] and L′′ ⊂
[y + l + 1, y + l + M ].

This result demonstrate the significance of the above con-
jecture that, if it holds, then all sets of lengths L with
maximal elasticity ρ(L) = ρ(H) are intervals apart from
their globally bounded beginning (L′) and end (L′′) parts.

Some Known Results

The Conjecture neither holds for cyclic groups and nor for
elementary 2-groups with Davenport constant greater than
or equal to four.

Theorem. (Geroldinger – Zhong 2018 ) Conjecture holds
for groups G with

• r(G) = 2.

•G ∼= C2 ⊕ C2 ⊕ C2n

The proof uses the value of D(G) and the structure of
minimal zero-sum sequences.

Theorem. (Geroldinger – Zhong 2018 ) Conjecture holds
for groups isomorphic to G ∼= Cr

pk, p
k > 2.

The proof uses the value of D(G), but the structure of
minimal zero-sum sequences is not needed.

Our Main Result

Theorem. (B.– Geroldinger – Zhong 2020 ) Conjecture
holds for the following non-cyclic finite abelian groups G.

(a)G is a p-group such that gcd(exp(G)− 2,D(G)− 2) = 1.

(b)G ∼= Cr1
ps1 ⊕C

r2
ps2, where p is a prime and r1, r2, s1, s2 ∈ N

such that s1 divides s2.

(c)G is a group with exp(G) = pq, where p, q are distinct
primes satisfying one of the following four properties:

(i) gcd(pq − 2,D(G)− 2) = 1.

(ii) gcd(pq − 2, p + q − 3) = 1.

(iii) q = 2 and p− 1 is a power of 2.

(iv) q = 2 and rp(G) = 1.

(d)G is a group with exp(G) ∈ [3, 11] \ {8}.

Note that D(G) and the structure of minimal zero-sum
sequences of maximal length (namely D(G)) is not known
in most of the cases discussed in the above theorem.

� �

� � � ��

� � � �

References

(1) A. Bashir and A. Geroldinger and Q. Zhong, On a zero-sum problem arising from factorization theory, to
appear in Combinatorial and Additive Number Theory IV, Springer 2021.

(2) A. Geroldinger and Q. Zhong, Long sets of lengths with maximal elasticity, Can. J. Math. 70 (2018),
1284 – 1318.


